Outcome 2 HOMEWORK

1. Integrate the following with respect to x :
a) $\int \frac{3}{\sqrt{1-x^{2}}} d x$
b) $\int \frac{1}{2\left(1+x^{2}\right)} d x$
c) $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}$
d) $\int_{0}^{3} \frac{6}{9+x^{2}} d x$.
2. Integrate the following with respect to x :
a) $\int \frac{d x}{\sqrt{4-25 x^{2}}}$
b) $\int_{0}^{\frac{2}{3}} \frac{1}{4+9 x^{2}} d x$.
3. Find
a) $\int \frac{2 x^{2}-2 x+3}{(2 x-1)\left(x^{2}+1\right)} d x$
b) $\int \frac{47+x-5 x^{2}}{3(x+2)(x-3)^{2}} d x$
c) $\int \frac{x^{3}}{x^{2}-1} d x$.
4. a) Integrate $\int_{0}^{2 \pi} x \sec ^{2} x d x$.
b) Use integration by parts to integrate $\int 4 x^{2} e^{2 x} d x$.
c) By writing $\tan ^{-1}=\tan ^{-1} x .1$ find $\int \tan ^{-1} x d x$.
d) Integrate $\int e^{-3 x} \sin 4 x d x$.
5. The gradient of the tangent to a curve is given by $\frac{d y}{d x}=\frac{-2 x}{y}$.

Find the equation of the curve if it passes through the point $(2,0)$.
6. At any time t the amount of active ferment in a culture of yeast is increasing at a rate that is directly proportional to the amount of active ferment already in the culture.
a) Express this law in the form of a differential equation and solve this equation.
b) Given that the amount doubles between the times $t=0$ and $t=1$, at what time will the amount have four times its original value?
7. A particle moves in a straight line with acceleration $6-2 v$, where v is its velocity.
a) If the particle has velocity $v=1$ initially, find its velocity at time t.
b) Show that this velocity tends to a limiting value.

